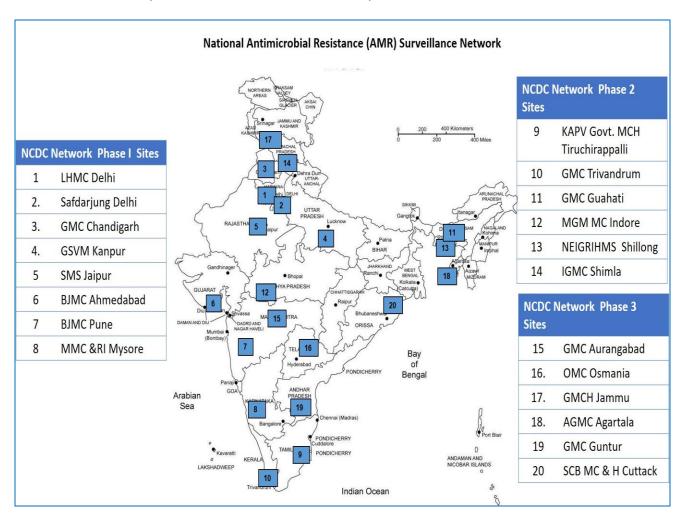
ANNUAL REPORT

Surveillance of Priority Bacterial Pathogens under National Antimicrobial Resistance Surveillance Network 2018


National Programme on Antimicrobial Resistance Containment

National Centre for Disease Control, Delhi, India

National Centre for Disease Control (NCDC) is coordinating the "National Programme on Antimicrobial Resistance Containment" initiated during the 12th five year plan. Under the programme a network of state medical college laboratories across the country are being strengthened in a phased manner for generating quality Antimicrobial Resistance (AMR) surveillance data in order to understand the AMR trends in various geographical regions through a sentinel surveillance platform. Currently under this network AMR surveillance for seven high priority pathogens and identified emerging AMR alerts are to be reported to the national AMR surveillance coordinating center at NCDC. NCDC being the national coordinating center for Global AMR Surveillance System (GLASS), has also been submitting the annual data to GLASS since 2017.

A standardized approach has been undertaken by NCDC for collection, analysis, and reporting of laboratory-based AMR surveillance data using WHONET, a microbiology data management software. Standard operating procedures (SOPs) and guidance documents have been developed for sentinel surveillance sites for AMR surveillance and the sites are trained to use them. Various measures are undertaken on a regular basis to improve the quality of culture, identification of pathogens and antimicrobial susceptibility testing (AST) with strict quality control. The officers and staff at the AMR surveillance network sites are provided regular hands on training and onsite support for streamlining AMR data management. Regular feedback is also provided to network sites to improve data quality.

As on 31st March 2019, the National AMR surveillance network includes 20 medical college laboratories located in 18 states (Figure 1 & Annexure-I). In the year 2018 (01 January 2018 to 31 December 2018), laboratories from 16 sentinel sites located in 14 states reported 50,724 priority pathogen isolates from unique patients and their antimicrobial sensitivity data. The data was validated and analyzed at NCDC for preparation of the AMR annual report for 2018.

Figure 1. National AMR Surveillance Network laboratories under National Programme on AMR Containment, National Centre for Disease Control, New Delhi

List of seven priority pathogens included under surveillance

- 1. Staphylococcus aureus
- 2. Enterococcus species
- 3. Escherichia coli
- 4. Klebsiella species
- 5. Pseudomonas species
- 6. Acinetobacter species
- 7. Salmonella enterica serotype Typhi and Paratyphi

National AMR Surveillance data:

The AMR data collected under the National Programme on AMR Containment for the year 2018 is from 16 tertiary health care settings (medical colleges) in 14 states, s.no. 1 to 16 in the above list. AMR surveillance data of a total of 50,724 isolates submitted to NCDC has been analyzed and is summarized below:

Table 1. The pathogens and specimens included under surveillance

Specimen	Staph. aureus	Enteroco ccus species	Klebsiella species	E. coli	Acinetobac ter species	Pseudomo nas species	<i>Salmonella</i> Typhi/Para typhi
Blood	•	•	•	•	•	•	•
Urine		•	•	•			
Pus Aspirates	•	•	•	•	•	•	
Other Sterile	•	•	•	•	•	•	
Body fluids							
Stool							•

Total number of isolates from unique patients after validation = 50,724

- Urine 21,944 (43%)
- Blood 10,787 (21%)
- Pus Aspirates (PA) and Other Sterile body fluids (OSBF) 17,991 (36%)
- Stool 2

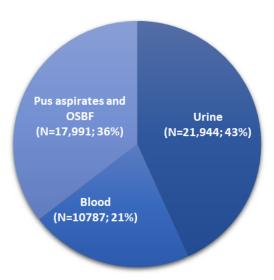


Figure 2. Specimen wise distribution of the priority pathogens reported under the programme

Of the 50,724 priority pathogen isolates submitted, the commonest is *E.coli* (36%) followed by *S. aureus* (22%), *Klebsiella* species (17%), *Enterococcus* species (10%), *Acinetobacter* species (8%) and *Pseudomonas* species (6%) (Table 2). From blood culture, *S. aureus* (38%) is the most common isolate followed by *Acinetobacter* species (19%) and *Klebsiella* species (18%) (Table 2).

Table 2. Specimen wise isolation of the Priority Pathogens under National AMR Surveillance Network

Priority Pathogens	Urine	Blood	Pus aspirates	Stool	Total
			and OSBF		
Staph. aureus		4098	6968		11066 (22%)
Enterococcus spp.	3643	801	715		5159 (10%)
Escherichia coli	14130	831	3148		18109 (36%)
Klebsiella spp.	4171	1942	2737		8850 (17%)
Pseudomonas spp.		777	2420		3197 (6%)
Acinetobacter spp.		2036	2003		4039 (8%)
Salmonella Typhi and		302		2	304 (1%)
Paratyphi					
Total	21944 (43%)	10787 (21%)	17991 (36%)	2	50,724

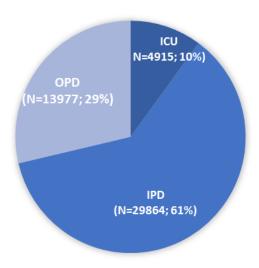


Figure 3. Patient location wise distribution of Priority pathogens reported in 2018

Table 3. Patient location wise isolation of the Priority Pathogens under National AMR Surveillance Network

Priority pathogens	Total	ICU	IPD	OPD
Staph. aureus	10839	896 (18%)	7173 (24%)	2770 (20%)
Enterococcus spp.	4933	608 (12%)	2963 (10%)	1362 (10%)
Escherichia coli	17446	716 (15%)	10465 (35%)	6265 (45%)
Klebsiella spp.	8358	1306 (27%)	4941 (16.5%)	2111 (15%)
Pseudomonas spp.	3061	344 (7%)	1823 (6%)	894 (6%)
Acinetobacter spp.	3825	1001 (20%)	2351 (8%)	473 (3%)
Salmonella Typhi and Paratyphi A and B	294	44 (1%)	148 (0.5%)	102 (1%)
Total	48,756	4,915	29,864	13,977

Details of location type were available for 48,756 patient isolates. It was observed that in the ICU patients, *Klebsiella* species was the commonly isolated pathogen (27%) followed by *Acinetobacter* species (20%), *Staph. aureus* (18%), *E. coli* (15%), *Enterococcus* species (12%) and *Pseudomonas* species (7%) (Table 3). Whereas among the in-patients *E. coli* was the commonly isolated pathogen (35%), followed by *Staph. aureus* (24%), *Klebsiella* species (16.5%), *Enterococcus* species (10%), *Acinetobacter* species (8%), and *Pseudomonas* species (6%) (Table 3).

Antibiotic resistance profile for the year 2018

The resistance profile of priority pathogens for selected antibiotics as per NCDC AMR Surveillance SOP has been tabulated in Tables 4-9 and summarized below:

Staphylococcus aureus and Enterococcus species

Staph. aureus isolates from blood showed 69% resistance to cefoxitin (surrogate marker for mecA-mediated oxacillin resistance) which was found to be higher than that reported in 2017 (57%). Overall resistance to cefoxitin, including isolates from other sterile body fluids and pus aspirates, was found to be 63% (Table 4). Emergence of linezolid resistant Staph. aureus and Enterococcus species to the extent of 1% and 6% respectively is a matter of concern (Table 4 and 5). Resistance to gentamicin was observed to be 19% in Staph. aureus and 57% in Enterococcus spp. isolates (Table 4 and 5). Notably, 64% isolates of Enterococcus spp. isolated from urine showed resistance to tetracycline (Table 5). 7% of

Enterococcus spp. isolates from blood were resistant to Linezolid. 3% of Vancomycin-Resistant Enterococci (VRE) from blood were also linezolid resistant.

Table 4: Resistance (%) in Staph. aureus observed in the year 2018

Antibiotic tested	Blood+ Pus Aspirate		PA+OSBF		Blood (N=4098)	
	+ OSBF (N=11066)	(N=6968)			
	Number	%R	Number	%R	Number	%R
Cefoxitin	10607	63%	6645	60%	3962	69%
Gentamicin	10119	19%	6429	19%	3690	20%
Ciprofloxacin	9889	60%	6228	67%	3661	49%
Trimethoprim/Sulfamethoxazole	8186	36%	5614	29%	2572	51%
Clindamycin	9965	25%	6442	22%	3523	31%
Erythromycin	9130	64%	5983	60%	3147	72%
Linezolid	9040	1%	5737	1%	3303	1%
Vancomycin*	14	0%	11	0	3	0
Doxycycline	3609	15%	2071	15%	1538	15%
Tetracycline	3852	16%	2238	15%	1614	18%

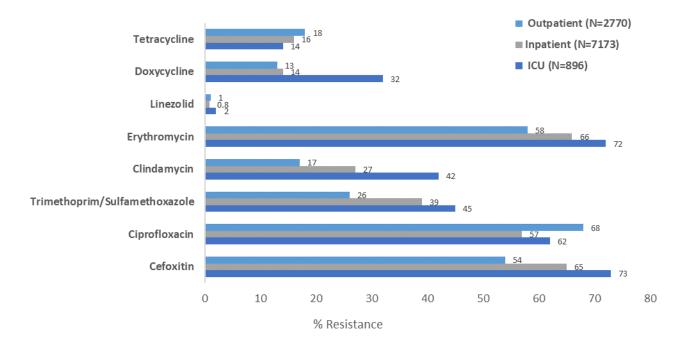
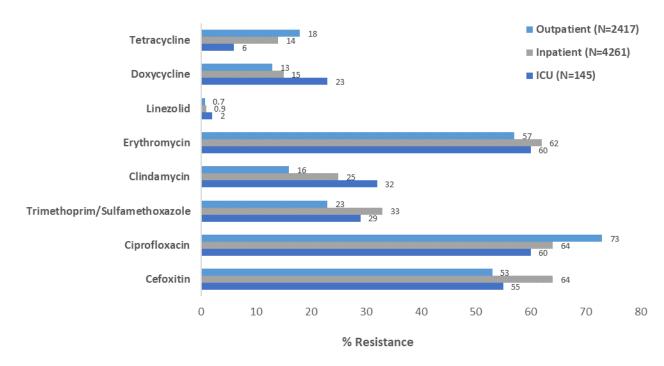
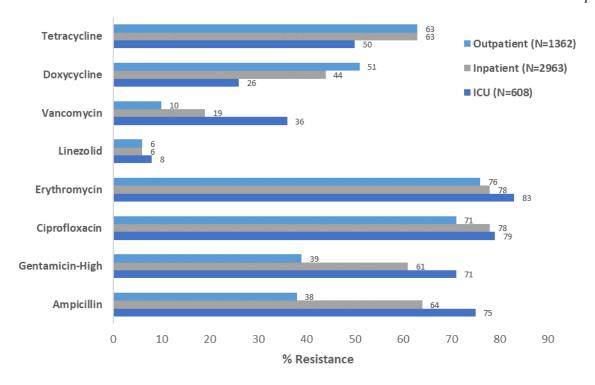

Abbreviations: OSBF, Other sterile body fluids; PA, Pus aspirates;

Table 5: Resistance (%) in *Enterococcus* species observed in the year 2018


Antibiotic tested	Blood+ Pus Aspirate		Pus Aspirate +		Blood (N=801)		Urine (N=3643)	
	+ OSBF+	urine	OSBF (N=715)					
	(N=515	59)						
	Number	%R	Number	%R	Number	%R	Number	%R
Ampicillin	3447	58%	536	50%	556	58%	2355	60%
Gentamicin-High	3721	57%	564	43%	598	55%	2559	60%
Ciprofloxacin	2570	76%	558	67%	673	70%	1339	84%
Erythromycin	1821	79%	599	79%	708	77%	514	81%
Linezolid	4615	6%	643	5%	743	7%	3229	6%
Vancomycin	3656	18%	547	14%	627	25%	2482	18%
Doxycycline	1053	46%	118	43%	137	24%	798	50%
Tetracycline	1760	62%	170	63%	188	48%	1402	64%

Abbreviations: OSBF, Other sterile body fluids; PA, Pus aspirates


^{* %} resistance of *Staph. aureus* against vancomycin is of low statistical validity as the number of isolates tested using broth microdilution method are ≤30.

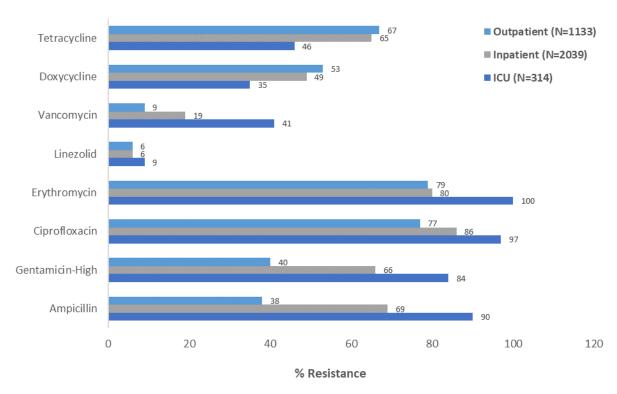

Figure 4a. Resistance profile of *Staph. aureus* from blood, pus aspirates and other sterile body fluids obtained from different location types in the health facilities

Figure 4b. Resistance profile of *Staph. aureus* from pus aspirates and other sterile body fluids obtained from different location types in the health facilities

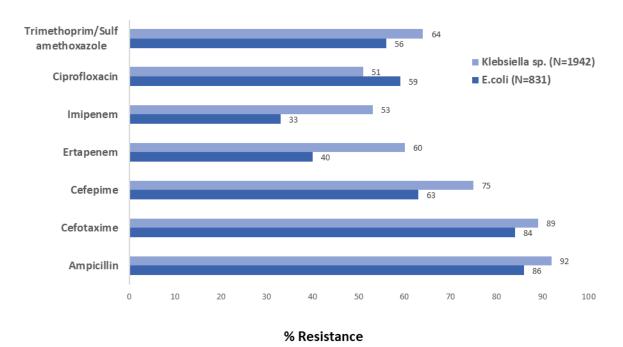
Figure 5a. Resistance profile of *Enterococcus* spp. from blood, pus aspirates, other sterile body fluids and urine obtained from different location types in the health facilities

Figure 5b: Resistance profile of *Enterococcus* species from urine specimens obtained from different location types in the health facilities

E. coli and Klebsiella species

E. coli isolated from blood showed 84% resistance to cefotaxime and 63% to cefepime. E. coli from urine showed higher resistance rates to cefepime (70%) than those isolated from blood (63%). (Table 6). Resistance to carbapenems that is ertapenem and imipenem was observed to be 40% and 33% in E.coli blood isolates which is higher than that observed in 2017 (37% to ertapenem and 25% to imipenem in year 2017) (Table 6). Compared to E. coli, Klebsiella species showed comparatively higher resistance to carbapenems i.e. 53% to imipenem and 60% to ertapenem in blood isolates (Table 7). Similarly as compared to E. coli higher resistance was observed in Klebsiella species to cefotaxime and cefepime isolated from blood (89% to cefotaxime and 75% to cefepime) (Table 7). The most common pathogen in ICU setting is Klebsiella species whereas E.coli is most commonly isolated in inpatients (Table 3).

Table 6: Resistance (%) in *E. coli* observed in year 2018


Antibiotic tested	Blood+ Aspirat OSBF+t (N=181	te + ırine	Blood (N=831)				Urine (N=14130)		PA+OS (N=314	
	Number	%R	Number	%R	Number	%R	Number	%R		
Ampicillin	6585	92%	509	86%	4791	93%	1285	89%		
Cefotaxime	10096	83%	500	84%	7721	82%	1875	87%		
Cefepime	6480	71%	496	63%	4289	70%	1695	76%		
Ertapenem	6208	38%	402	40%	4278	37%	1528	39%		
Imipenem	5885	35%	589	33%	3479	37%	1817	32%		
Ciprofloxacin	11110	74%	731	59%	7536	75%	2843	75%		
Trimethoprim/Sul	12821	66%	392	56%	11301	66%	1128	69%		
famethoxazole										
Nitrofurantoin	13358	12%			13194	12%				

Abbreviations: OSBF, Other sterile body fluids; PA, Pus aspirates; Sensitivity of *E.coli* against colistin is not tested using broth microdilution test method therefore results are not considered.

Table 7: Resistance (%) in *Klebsiella* species observed in year 2018

Antibiotic tested	Blood+ Aspira OSBF+U (N=88	te + Jrine	Blood (N=	:1942)	12) Urine (N=4171)		PA+OSBF (N=2737)	
	Number	%R	Number	%R	Number	%R	Number	%R
Cefotaxime	5476	85%	1346	89%	2442	81%	1688	87%
Cefepime	3431	75%	923	75%	1221	72%	1287	78%
Ertapenem	3465	56%	891	60%	1388	52%	1186	58%
Imipenem	4283	54%	1256	53%	1458	54%	1569	56%
Ciprofloxacin	6290	62%	1649	51%	2147	65%	2494	66%
Trimethoprim/	5595	65%	1065	64%	3458	64%	1072	69%
Sulfamethoxazole								
Nitrofurantoin	4019	48%			3799	46%		

Abbreviations: OSBF, Other sterile body fluids; PA, Pus aspirates; Sensitivity of *Klebsiella* spp. against colistin is not tested using broth microdilution test method therefore results were not considered.

Figure 6. Resistance profile of *Escherichia coli* and *Klebsiella* species obtained from blood specimens

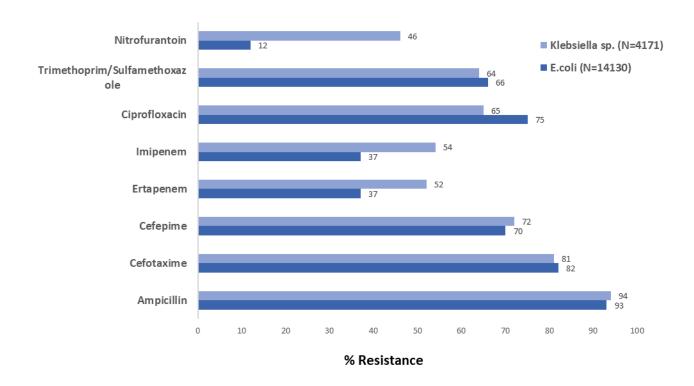
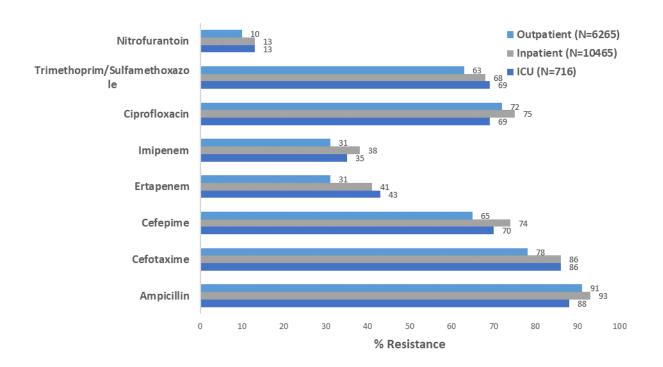



Figure 7. Resistance profile of E. coli and Klebsiella species obtained from urine specimens

Figure 8a. Resistance (%) in *E. coli* in different location types

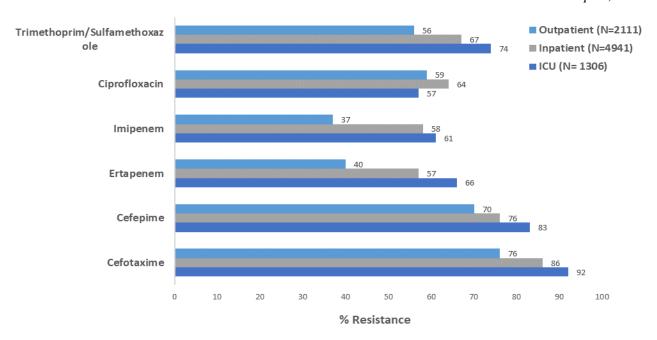
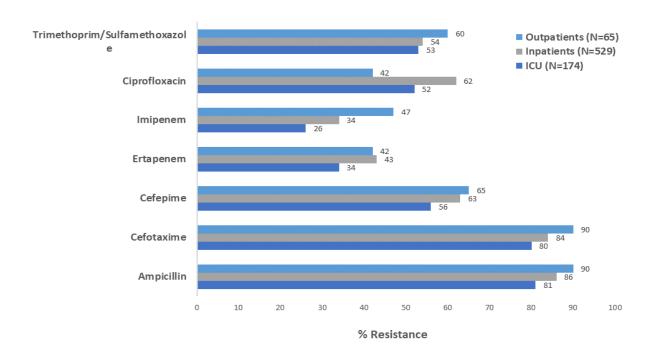
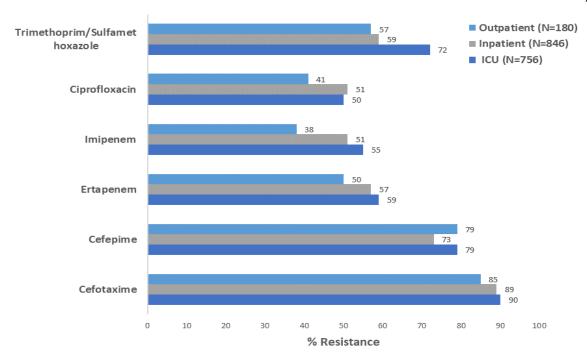
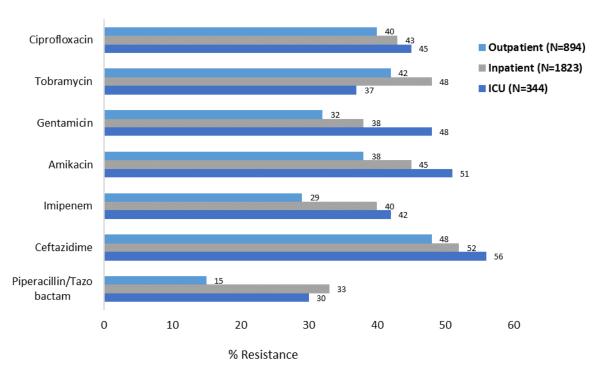




Figure 8b. Resistance (%) in Klebsiella species in different location types

Figure 9. Resistance profile of *Escherichia coli* in blood specimens obtained from different location types in the health facilities

Figure 10. Resistance profile of *Klebsiella* spp. from blood specimens obtained from different location types in the health facilities


Pseudomonas and Acinetobacter species

Pseudomonas species showed lowest resistance to piperacillin-tazobactam (27%) followed by imipenem (36%), aminoglycosides (amikacin: 43%; tobramycin: 45%), ciprofloxacin (43%) and ceftazidime (51%) (Tables 8). However, *Acinetobacter* species showed high resistance to imipenem (66%) and aminoglycosides (amikacin: 66%; gentamicin: 54%) (Table 9). Among the anti-pseudomonal agents, piperacillin/tazobactam was found to be more active than imipenem. Not surprisingly, the isolates of both the species from ICU showed higher resistance as compared to isolates from non-ICU settings (Figure 11 and 12). Isolates of *Acinetobacter* species showed >50% resistance to almost all the antibiotics tested except for minocycline (29%) (Table 9).

Table 8: Resistance (%) in Pseudomonas species

Antimicrobials tested	Blood+ Pus OSBF (N	^	Pus Aspirate + OSBF (N=2420)		Blood (N=777)	
	Number	%R	Number	%R	Number	%R
Piperacillin/Tazobactam	2660	27%	2068	28%	592	24%
Ceftazidime	2806	51%	2140	52%	666	49%
Imipenem	2371	36%	1842	39%	529	28%
Amikacin	2729	43%	2089	44%	640	41%
Gentamicin	1403	39%	1017	39%	386	38%
Tobramycin	804	45%	608	48%	196	35%
Ciprofloxacin	2756	43%	2105	47%	651	30%
Colistin	45	4%	28	7%	17	0

Abbreviations: OSBF, Other sterile body fluids; PA, Pus aspirates; Sensitivity of *Pseudomonas* spp. against colistin is tested for only 45 isolates using broth microdilution test method.

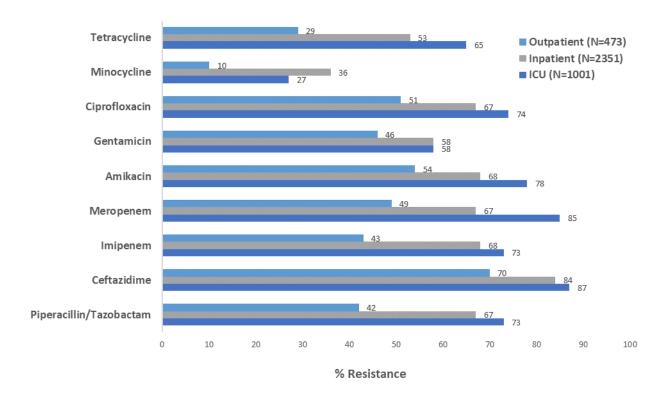


Figure 11. Resistance profile of *Pseudomonas* species obtained from different location types in health facilities

Table 9: Resistance (%) in *Acinetobacter* species observed in year 2018

Antimicrobials tested		od + Pus Aspirate + Pus A OSBF (N=4039) (N=20		+ OSBF	Blood (N=2036)	
	Number	%R	Number	%R	Number	%R
Piperacillin/Tazobactam	3227	66%	1674	74%	1553	57%
Ceftazidime	2527	83%	1322	87%	1205	79%
Imipenem	2822	66%	1384	76%	1438	57%
Amikacin	3272	68%	1636	74%	1636	61%
Gentamicin	2335	56%	1183	66%	1152	46%
Ciprofloxacin	3425	67%	1745	77%	1680	57%
Minocycline	489	29%	225	43%	264	16%
Tetracycline	524	50%	224	49%	300	51%

Abbreviations: OSBF, Other sterile body fluids; PA, Pus aspirates; Sensitivity of *Acinetobacter* spp. against colistin is not tested using broth microdilution test method therefore results are not considered.

Figure 12. Resistance profile of *Acinetobacter* species obtained from different location types in health facilities

Salmonella enterica serotypes Typhi and Paratyphi

Noticeably, isolates of *Salmonella enterica* serotype Typhi and Paratyphi obtained from blood showed 35% resistance to ciprofloxacin which has increased from previous year resistance rate (27%). Surprisingly, resistance to azithromycin in *Salmonella* Typhi isolates has almost doubled (8%) than from previous year (4.5%) (Table 10). However the number of *Salmonella* Typhi isolates tested for Azithromycin were much lower last year.

Table 10: Resistance (%) in *Salmonella enterica* serotypes Typhi and Paratyphi isolated from blood specimen

Antibiotic tested	S. Tyl		S. Paratyphi		
	(N=27	79)	(N=23)*		
	No. tested	%R	No. tested	%R	
Ampicillin	238	10	18	0	
Ceftriaxone	202	8	15	0	
Imipenem	53	13	1	0	
Nalidixic acid	254	97	18	100	
Ciprofloxacin	263	35	21	29	
Trimethoprim/Sulfamethoxazole	230	3	18	0	
Azithromycin #	245	8			
Chloramphenicol	237	4	16	0	

^{*}Statistical validity of % resistance of Salmonella Paratyphi is low as the number of isolates are <30.

[#] AST for Azithromycin was performed only on isolates of S. Typhi

Annexure I

National AMR Surveillance Network laboratories under National Programme on AMR Containment, National Centre for Disease Control, New Delhi

- 1. Lady Harding Medical College and associated hospitals, New Delhi
- 2. VMMC and associated Safdarjung Hospital, New Delhi
- 3. Government Medical College & Hospital, Chandigarh (UT)
- 4. GSVM Medical College, Kanpur, Uttar Pradesh
- 5. SMS Medical College, Jaipur, Rajasthan
- 6. BJ Medical College, Ahmedabad, Gujarat
- 7. BJ Medical College, Pune, Maharashtra
- 8. Mysore Medical College and Research Institute, Mysore, Karnataka
- 9. KAPV Govt Medical College Hospital, Thiruchirapally, Tamil Nadu
- 10. Government Medical College, Thiruvananthapuram, Kerala
- 11. MGM Medical College & MY Hospital, Indore, Madhya Pradesh
- 12. NEIGRIHMS, Shillong, Meghalaya
- 13. Indira Gandhi Medical College, Shimla, Himachal Pradesh
- 14. Government Medical College, Aurangabad, Maharashtra
- 15. Gauhati, Medical College Hospital, Guwahati, Assam
- 16. Agartala Govt. Medical College, Agartala, Tripura
- 17. Osmania Medical College, Hyderabad, Telangana
- 18. Guntur Medical College, Guntur, Andhra Pradesh
- 19. SCB Medical College, Cuttack, Odisha
- 20. Government Medical College & Hospital, Jammu, Jammu & Kashmir