# National Centre for Disease Control National AMR Surveillance Network AMR Data for year 2017

NCDC is coordinating the "National Programme for Containment of Antimicrobial resistance" approved during the 12<sup>th</sup> five year plan. Under the programme a network of laboratories is being set up across the country for conducting Antimicrobial Resistance (AMR) surveillance in order to understand the AMR trends in various geographical regions and accordingly take appropriate action. Currently 13 labs are included in the network:

- 1. Lady Hardinge Medical College and associated hospitals, New Delhi, Delhi
- 2. VMMC and associated Safdarjung Hospital, New Delhi, Delhi
- **3.** Government Medical College & Hospital, Chandigarh (UT)
- 4. GSVM Medical College, Kanpur, Uttar Pradesh
- 5. SMS Medical College, Jaipur, Rajasthan
- 6. BJ Medical College, Ahmedabad, Gujarat
- 7. BJ Medical College, Pune, Maharashtra
- 8. Mysore Medical College and Research Institute, Mysore, Karnataka
- 9. KAPV Govt Medical College Hospital, Thiruchirapally, Tamil Nadu
- 10. Government Medical College, Thiruvananthapuram, Kerala
- 11. MGM Medical College & MY Hospital, Indore, Madhya Pradesh
- 12. NEIGRIHMS, Shillong, Meghalaya
- 13. Gauhati, Medical College Hospital, Guwahati, Assam

NCDC received AMR surveillance data for the year 2017 from 10 of the above 13 labs (S.no. 1 to 10) based on the standardized Data Management SOP in the WHONET format for the following pathogens:

- 1. Staphylococcus aureus
- 2. *Enterococci* species
- 3. Escherichia coli
- 4. *Klebsiella* species
- 5. *Pseudomonas* species
- 6. *Acinetobacter* species
- 7. Salmonella enterica serotype Typhi and Paratyphi



The AMR data collected under the National AMR Containment Programme for the year 2017 is from tertiary health care settings (medical colleges). The data has been analyzed and is summarized below:

| Specimen           | S.<br>aureus | Enterococcus<br>species | Klebsiella<br>pneumoniae | E. coli | Acinetoba<br>cter<br>species | Pseudom<br>onas<br>species | <i>Salmonella</i><br>Typhi/Par<br>atyphi |
|--------------------|--------------|-------------------------|--------------------------|---------|------------------------------|----------------------------|------------------------------------------|
| Blood              | •            | •                       | •                        | •       | •                            | •                          | •                                        |
| Urine              |              | •                       | •                        | ٠       |                              |                            |                                          |
| Pus Aspirates      | •            | •                       | •                        | •       | •                            | •                          |                                          |
| Other Sterile      | •            | •                       | •                        | ٠       | •                            | •                          |                                          |
| <b>Body fluids</b> |              |                         |                          |         |                              |                            |                                          |

Table1. The pathogens and specimens included

Total Number of unique patient's isolates data after validation from these 10 labs = 25833

- Urine 12144
- Blood 6354
- Pus Aspirates (PA) and Other Sterile body fluids (OSBF) 7335





Figure 2. Isolation rate of priority pathogen from all specimens w.r.t the type of location in Healthcare facility



Of the 25833 isolates of priority pathogens, *E.coli* constituted 33% followed by *Klebsiella* species (24%), *S. aureus* (17.5%), *Enterococcus* species (10.6%), *Acinetobacter* species (8.5%) and *Pseudomonas* species (5.8%). However isolation rate from blood was highest for *S. aureus* (36.4%), followed by *Klebsiella* species (21.1%), *Acinetobacter* species (15.8%), *Enterococcus* species (9.7%), *E. coli* (7.8%) and lowest for *Pseudomonas* species (6%) (Table 2).

|                       | Total<br>number of | Number<br>isolated | Number<br>isolated from | Number isolated<br>Other Sterile Body<br>Fluids +Pus |
|-----------------------|--------------------|--------------------|-------------------------|------------------------------------------------------|
| Priority Pathogens    | isolates           | from Blood         | Urine                   | aspirates                                            |
| S. aureus             | 4537               | 2317               | 0                       | 2220                                                 |
| Enterococcus species  | 2760               | 620                | 1837                    | 303                                                  |
| E. coli               | 8445               | 496                | 6919                    | 1030                                                 |
| Klebsiella species    | 6209               | 1341               | 3388                    | 1480                                                 |
| Pseudomonas species   | 1498               | 383                | 0                       | 1115                                                 |
| Acinetobacter species | 2195               | 1008               | 0                       | 1187                                                 |
| Salmonella enterica   |                    |                    |                         |                                                      |
| serotype Typhi and    |                    |                    |                         |                                                      |
| Paratyphi             | 189                | 189                | 0                       | 0                                                    |
| Total                 | 25833              | 6354               | 12144                   | 7335                                                 |

Table 2. Specimen-wise isolation of number of Priority Pathogens

Figure 3. Isolation of priority pathogens from various specimens



Isolation of Priority pathogens from various Specimens

#### Antibiotic resistance pattern observed

The resistance profile of selected antibiotics as per NCDC AMR Surveillance SOP for priority pathogens have been tabulated in Tables 3-8 and summarized below:

## **Gram Positive Bacteria**

*S. aureus* isolates from blood showed 57.1% resistance to cefoxitin (surrogate for *mec*A-mediated oxacillin resistance), overall resistance to cefoxitin including other sterile body fluids and pus aspirates was found to be 55.7% (Table 3 and 4). The results of resistance to vancomycin against *S. aureus* and *Enterococcus* species were not considered as the susceptibility test was not done by broth microdilution as per CLSI guidelines. However, emergence of linezolid resistant *S. aureus* isolates and isolates of *Enterococcus* species to the extent of 2.2% and 4.6% respectively is a matter of concern. Resistance to gentamicin (aminoglycoside) was observed to be 38.7% for *S. aureus* and 59% for *Enterococcus* species (Table 3 and 4). Figure 4 depicts the higher resistance rates for most of the antibiotics tested against *S. aureus* in ICU settings as compared to non-ICU setting. In contrast, the resistance rate for tetracycline and doxycycline was observed to be higher in non-ICU setting than in ICU setting (Figure 4 and 5).

| Antimicrobials    | Blood+OSBF+PA+Urine |              |                   |              |                |             |  |
|-------------------|---------------------|--------------|-------------------|--------------|----------------|-------------|--|
| tested            |                     | (N=2760)     | <b>Blood+OSBE</b> | F+PA (N=923) | Urine (N=1837) |             |  |
|                   | No. tested          | % Resistance | No. tested        | % Resistance | No.tested      | %Resistance |  |
| Ampicillin        | 1719                | 58.1         | 571               | 63           | 1170           | 55.8        |  |
| Erythromycin      | 1206                | 72.3         | 590               | 73.1         | 631            | 71.8        |  |
| Gentamicin (High) | 2180                | 56.1         | 688               | 50.6         | 1514           | 59          |  |
| Ciprofloxacin     | 1178                | 73.4         | 754               | 68.8         | 438            | 81.3        |  |
| Linezolid         | 2459                | 5.7          | 754               | 8.6          | 1728           | 4.6         |  |
| Tetracycline*     | 1068                | 44.9         | 359               | 43.5         | 722            | 45.7        |  |

## Table 3: Resistance (%) in Enterococcus species





% Resistance in Enterococcus species

| Table 4. Resistance ( | (0/a) | in Stanh | vlococcus | aurous** |
|-----------------------|-------|----------|-----------|----------|
| Table 4: Resistance   | (70)  | ш эшрп   | ylococcus | aureus   |

| Antimicrobials | Blood+OSBF | +PA (N=4537) | Blood      | l (N=2317)   | OSBF+P     | PA (N=2220)  |
|----------------|------------|--------------|------------|--------------|------------|--------------|
| tested         | No. tested | % Resistance | No. tested | % Resistance | No. tested | % Resistance |
| Cefoxitin      | 3732       | 55.7         | 2159       | 57.1         | 1590       | 53.7         |
| Erythromycin   | 3256       | 63.4         | 2180       | 62.9         | 1092       | 64.5         |
| Clindamycin    | 2841       | 31.5         | 1857       | 32.7         | 999        | 29.4         |
| TMP/SMX        | 2825       | 45.8         | 1423       | 46.2         | 1413       | 45.4         |
| Gentamycin     | 3370       | 32           | 1834       | 26.3         | 1552       | 38.7         |
| Ciprofloxacin  | 3259       | 55.9         | 2141       | 49.4         | 1134       | 68.3         |
| Linezolid      | 3396       | 1.7          | 1885       | 1.3          | 1529       | 2.2          |
| Doxycycline    | 695        | 11.1         | 418        | 7.9          | 282        | 15.6         |
| Tetracycline   | 1546       | 19.5         | 918        | 14.2         | 633        | 27.2         |

Abbreviations: OSBF, Other sterile body fluids; PA, Pus aspirates;

\*\*Sensitivity of *S. aureus* against vancomycin is not tested using screen agar test method therefore results are not considered.



Figure 5: Resistance (%) in Staphylococcus aureus w.r.t type of location in healthcare facility

## **Gram Negative Lactose Fermenting Bacteria**

*E. coli* isolated from blood showed 81.4% resistance to cefotaxime and 68.3% to cefepime. Similar trend was observed for urine isolates with resistance 79.3% to cefotaxime and 72.3% to cefepime. Resistance to carbapenems that is ertapenem and imipenem was observed to be 36.7% and 25.2% in blood isolates. While in urine isolates, slightly higher resistance was observed for imipenem (34%) than ertapenem (30.8%). In contrast to *E. coli*, isolates of *Klebsiella* species showed comparatively high resistance to carbapenems i.e. 43.5% to imipenem and 52.2% to ertapenem in blood isolates whereas 57.9% to imipenem and 55.8% to ertapenem in urine isolates. Similarly higher trend of resistance to cefotaxime and cefepime was observed in *Klebsiella* species isolated from blood and urine (Tables 5 and 6). Overall, blood isolates of *Klebsiella species* were more resistant than the *E. coli* isolated from blood (Figure 9).

| Antimicrobials | Blood+OSBF+PA+Urine |                 |               |              |                |              |
|----------------|---------------------|-----------------|---------------|--------------|----------------|--------------|
| tested         | (N                  | <b>1=8445</b> ) | Blood (N=496) |              | Urine (N=6919) |              |
|                | No. tested          | % Resistance    | No. tested    | % Resistance | No. tested     | % Resistance |
| Ampicillin     | 3011                | 85.1            | 222           | 85.6         | 2338           | 84.3         |
| Cefotaxime     | 5568                | 80.2            | 301           | 81.4         | 4755           | 79.3         |
| Ceftazidime    | 2648                | 66              | 222           | 73           | 2054           | 62.3         |
| Cefepime       | 2427                | 72.1            | 240           | 68.3         | 1926           | 72.3         |
| Ertapenem      | 2846                | 30.9            | 251           | 36.7         | 2233           | 30.8         |
| Imipenem       | 2147                | 30.5            | 349           | 25.2         | 1260           | 34           |
| Ciprofloxacin  | 4312                | 73.2            | 453           | 58.1         | 3106           | 76.1         |

## Table 5: Resistance (%) in Escherichia coli



Figure 6. Resistance (%) in *Escherichia coli* w.r.t type of location in healthcare facility

Figure 7. Resistance in *Escherichia coli* isolated from blood and urine in ICU (A) and IPD (B) healthcare facility





8

#### Figure 7(B)



 Table 6: Resistance (%) in Klebsiella species

| Antimicrobials | Blood+OSBF+PA+Urine |              |            |              |                |              |
|----------------|---------------------|--------------|------------|--------------|----------------|--------------|
| tested         | (N=                 | =6209)       | Blood      | (N=1341)     | Urine (N=3388) |              |
|                | No. tested          | % Resistance | No. tested | % Resistance | No. tested     | % Resistance |
| Cefotaxime     | 4371                | 82.8         | 971        | 90.2         | 2628           | 79.8         |
| Ceftazidime    | 1437                | 68.7         | 378        | 84.1         | 577            | 49.7         |
| Cefepime       | 2304                | 82.3         | 586        | 81.6         | 1264           | 84.3         |
| Ertapenem      | 2969                | 53           | 734        | 52.2         | 1644           | 55.8         |
| Imipenem       | 2365                | 48.4         | 749        | 43.5         | 822            | 57.9         |
| Cipro          | 4039                | 65.2         | 1241       | 54.6         | 1624           | 74.7         |
| TMP/SMX        | 4241                | 71.3         | 623        | 84.6         | 3148           | 68.6         |

Abbreviations: OSBF, Other sterile body fluids; PA, Pus aspirates; TMP/SMX (Trimethoprim/sulfamethoxazole or Cotrimoxazole)



Figure 8. Resistance (%) in Klebsiella species w.r.t type of location in healthcare facility

Figure 9. Resistance (%) in *Escherichia coli* and *Klebsiella* species isolated from blood (A) and urine (B) specimens Figure 9(A)





% Resistance in E.coli & Klebsiella species isolated from urine

Figure 10. Resistance in *Klebsiella* species isolated from blood and urine in ICU (A) and IPD (B) healthcare facility

Figure 10 (A)





#### Gram Negative Non-Lactose Fermenting Bacteria

Overall resistance observed in *Pseudomonas* species was found to be lowest for Imipenem (29.9%) followed by piperacillin-tazobactam (31.6%), aminoglycosides (amikacin: 39.3%; tobramycin: 38.9%), ciprofloxacin (45.3%) and highest resistance was observed for ceftazidime (50%). In contrast *Acinetobacter* species showed an alarming % resistance to imipenem (66.1%). Almost similar pattern of resistance was observed for aminoglycosides (amikacin: 65.6%; gentamycin: 59.5%) (Tables 7 and 8). Among the anti-pseudomonal agents, imipenem and piperacillin/tazobactam showed comparable resistance rate 29.9% and 31.6% respectively. Notably, isolates from ICU showed higher resistance rates compared to isolates non-ICU settings (Figure 11).

| Antimicrobials | Blood+OSBF+PA (N=1494) |              | Blood (    | N=383)     | OSBF+PA (N=1115) |            |
|----------------|------------------------|--------------|------------|------------|------------------|------------|
| tested         |                        |              |            | %          |                  | %          |
|                | No. tested             | % Resistance | No. tested | Resistance | No. tested       | Resistance |
| Piperacillin-  | 1144                   | 31.6         | 304        | 23         | 842              | 34.9       |
| tazobactam     |                        |              |            |            |                  |            |
| Ceftazidime    | 1268                   | 50.7         | 340        | 47.1       | 932              | 52.3       |
| Imipenem       | 1168                   | 29.9         | 311        | 30.2       | 861              | 30.1       |
| Amikacin       | 1240                   | 39.3         | 319        | 36.4       | 925              | 40.5       |
| Tobramycin     | 265                    | 38.9         | 76         | 30.3       | 190              | 42.6       |
| Ciprofloxacin  | 1301                   | 45.3         | 350        | 36         | 955              | 48.9       |

#### Table 7: Resistance (%) in *Pseudomonas* species





% Resistance in Pseudomonas species

Antibiotics tested

Isolates of *Acinetobacter* species showed >50% resistance to almost all the antibiotics tested. Among third generation cephalosporins, higher susceptibility was observed for ceftazidime than cefotaxime against both *Pseudomonas* species and *Acinetobacter* species. Among the ICU patients, antibiotics are administered empirically, therefore it is not surprising that the resistance rates against various antibiotics for *Acinetobacter* species are higher in the ICU setting as compared to ward and OPD (Figure 12).

| Antimicrobials | Blood+OSB  | F+PA (N=2160) | Blood      | (N=1008)     | OSBF+PA (N=1187) |              |
|----------------|------------|---------------|------------|--------------|------------------|--------------|
| tested         | No. tested | % Resistance  | No. tested | % Resistance | No. tested       | % Resistance |
| Imipenem       | 1677       | 66.1          | 825        | 58.3         | 886              | 73.9         |
| Ceftazidime    | 1216       | 79.4          | 655        | 73.6         | 589              | 85.9         |
| Cefotaxime     | 866        | 84.1          | 331        | 79.2         | 544              | 86.9         |
| Amikacin       | 1828       | 65.6          | 881        | 57.8         | 980              | 73.2         |
| Gentamycin     | 1045       | 59.5          | 509        | 51.1         | 545              | 67.5         |
| Minocycline    | 268        | 53            | 137        | 54           | 134              | 52.2         |

| <b>T</b> 11 0 | <b>D</b> • 4 | (0/)             | •  | A • /   | 1 /    | •       |
|---------------|--------------|------------------|----|---------|--------|---------|
| Table X:      | Resistance   | (%)              | ın | Acineto | bacter | species |
| 14010 01      |              | $(, \mathbf{v})$ |    | 1100000 | 00000  | species |



Figure 12. Resistance (%) in Acinetobacter species w.r.t type of location in healthcare facility

Noticeably, isolates of *Salmonella enterica* serotype Typhi and Paratyphi obtained from blood showed 27.4% resistance to ciprofloxacin and *Salmonella* Typhi isolates showed 4.5% resistance to azithromycin (tested only for *Salmonella* Typhi) (Table 9).

 Table 9: Resistance (%) in Salmonella enterica serotypes Typhi and Paratyphi isolated from blood

| Antimicrobials tested | Blood (N=189) |              |  |  |  |
|-----------------------|---------------|--------------|--|--|--|
|                       | No. tested    | % Resistance |  |  |  |
| Ampicillin            | 157           | 18.5         |  |  |  |
| Chloramphenicol       | 147           | 9.5          |  |  |  |
| Ceftriaxone           | 176           | 0            |  |  |  |
| Nalidixic acid        | 155           | 91.6         |  |  |  |
| Ciprofloxacin         | 175           | 27.4         |  |  |  |
| TMP/SMX               | 142           | 10.6         |  |  |  |
| Azithromycin          | 89            | 4.5          |  |  |  |

Abbreviations: TMP/SMX (Trimethoprim/sulfamethoxazole or Cotrimoxazole)